Selvam College of Technology (Autonomous), "A" Grade by NAAC, UGC recognized 2(f) Status, Approved by AICTE – New Delhi, Affiliated to Anna University Namakkal – 03. www.selvamtech.edu.in

DEPARTMENT OF CIVIL ENGINEERING CE3502- STRUCTURAL ANALYSIS-1

UNIT-4- FLEXIBLITY METHOD

2 MARKS QUESTIONS

S.No	QUESTIONS	CO'S
1.	Find degree of indeterminacy of the following. Degree of indeterminacy = No. of reactions – No. of condition equations $= (3 + 2 + 3) - 3 = 5$	CO4
2.	Define kinematic redundancy. When a structure is subjected to loads, each joint will undergo displacements in the form of translations and rotations. Kinematic redundancy of a structure means the number of unknown joint displacement in a structure.	CO4
3.	Give the mathematical expression for the degree of static indeterminacy of rigid jointed plane frames. Degree of static indeterminacy = (No. of closed loops x 3) – No. of releases	CO4
4.	What are the properties which characterize the structure response by means of force- displacement relationship? Each element of a flexibility matrix represents a displacement at a coordinate (i) due to a force at a coordinate (j). If the matrix of the structure is known, we know the behaviour of the structure.	CO4
5.	 What are the conditions to be satisfied for determinate structures and how are indeterminate structures identified? Determinate structures can be solving using conditions of equilibrium alone (H = 0; V = 0; M = 0). No other conditions are required. Indeterminate structures cannot be solved using conditions of equilibrium because (H ≠ 0; V ≠ 0; M ≠ 0). Additional conditions are required for solving such structures. 	CO4

Selvam College of Technology (Autonomous), "A" Grade by NAAC, UGC recognized 2(f) Status, Approved by AICTE – New Delhi, Affiliated to Anna University Namakkal – 03. www.selvamtech.edu.in

	Write down the equation for the degree of static indeterminacy of the pin-	
	jointed frames, explaining the notations used.	
6.	Total indeterminacy = External indeterminacy + Internal indeterminacy	CO4
	External indeterminacy = No. of reactions - No. of equilibrium equations	
	Internal indeterminacy = $m - (2 j - 3)$	
	Differentiate pin-jointed plane frame and rigid jointed plane frame.	
	S.No Pin jointed plane frame Rigid jointed plane frame 1 The joints permit change of angle The members connected at a rigid joint with maintain the angle between them even under deformation due to loads.	
7.	2 The joints are incapable of transferring any moment to the connected members and vice-versa. Members can transmit both forces and moments between themselves through the joint.	CO4
	The pins transmit forces between connected members by developing shear. Provision of rigid joints normally increases the redundancy of the structures.	
	Mention any two methods of determining the joint deflection of a perfect	
	frame.	
o	1.Unit load method	CO4
8.	2. Virtual work method	CO4
	3.Slope deflection method	
	4.Strain energy method	
	What are the requirements to be satisfied while analyzing a structure?	
	The three conditions to be satisfied are:	
9.	(i) Equilibrium condition	CO4
	(ii) Compatibility condition	
	(iii) Force displacement condition	
	What is meant by force method in structural analysis?	
	A method in which the forces are treated as unknowns is known as force method.	
	The following are the force methods:	
10.	Flexibility matrix method	CO4
	Consistent deformation method	
	Claypeyron's 3 moment method	
	Column analogy method	